Abstract

Gasification technologies have been extensively studied for their potential to convert biomass feedstocks into syngas (a mixture of CH4, H2, and CO mainly) that can be further turned into heat or electricity upon combustion. It is crucial to understand optimal gasification process parameters for practical design and operation for maximizing the potential. This study combined the Monte Carlo simulation approach, gasification kinetic modeling, and the random forest algorithm to predict the optimal gasification process parameters (i.e. water content, particle size, porosity, thermal conductivity, emissivity, shape, and reaction temperature) towards a maximum syngas yield. The Monte Carlo approach randomly generated a data pool of the process parameters following either a normal or uniform distribution, which was then fed into a validated kinetic model to create 2,000 datasets (process parameters and syngas yields). For the random forest model, the mean decrease accuracy and mean decrease Gini were used to assess the importance of the process parameters on syngas yields. The accuracy of the optimization method was evaluated using the coefficient of determination (R2), the root means square error (RMSE), and the mean absolute error (MAE). Generally, the predictions for the normal distribution case were closer to the experimental data obtained from existing literature than that for the uniform distribution case. The model was used to predict the optimal syngas yield and process parameters of wood gasification and it was shown that the predictions were generally in good agreement (<12% difference for the case of normal distribution) with existing experimental results. The method serves as a useful tool for determining optimal gasification process parameters for process and operation design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.