Abstract

The transformation from Fe1-xS (IC) phase to a mixture of FeS (2C) and iron poor Fe1-xS (IC) phases has been investigated by a series of in-situ heating experiments. The purpose of this study is to resolve the controversy over the mechanism of phase transformation (spinodal decomposition versus nucleation and growth) and to explain the different microstructures observed in the two phase mixture of FeS and Fe1-xS (Figure 1).In-situ heating experiments were carried out using a JEOL JEM EM-SHTH double tilt heating holder. Synthetic “single” Fe0.97S crystals were cut into 3 mm disks, mechanically and ion thinned to electron transparency. In all cooling experiments, the sample was first held at 390 K, a temperature above the transition temperature in order to generate an initial single phase material; then, the temperature was quickly reduced to the temperature of interest.Figure 2a shows the development of a lamellar type microstructure after the sample's temperature was reduced from 390 K to 363 K and then held at this temperature for ten minutes. At 363 K, the undercooling is 27 K. The troilite FeS (2C) phase heterogeneously nucleates and grows along the edge of the sample. Diffraction analysis shows that the FeS (2C) phase is embedded in the iron-poor Fe1-x,S matrix with a rod-like structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.