Abstract

The authors have developed novel hyaluronic acid (HA)-collagen sponge materials (HACSMs) composed of various ratios of bird feet (BF) and pig skin (PS) collagen that are fabricated employing a combination of freezing, lyophilizing, and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) crosslinking methods. Morphology, swelling ratio, resistance to collagenase, thermal stability, tensile strength, and free amine index are determined to evaluate the physical-chemical properties of various HACSMs. Different BF: PS ratios directly vary with the physical-chemical properties of HACSMs and control their biodegradability for multiple uses. Resistance to collagenase, thermal stability, and tensile strength of HACSMs increases as the ratio of BF collagen increases. On the contrary, the higher swelling ratio, free amine index, and pore size occur in materials composed of higher ratios of PS collagen. A linear relationship between the decreased ratio of PS collagen and the increase in tensile strength and biostability are observed. The materials of B4P1HA (BF: PS: HA=4: 1: 0.2) exhibit the highest value of tensile strength, but no significant difference exists between B4P1HA and B5P0HA (BF: PS: HA=5: 0: 0.2). These phenomena should be closely related to the BF collagen which contains a higher amount of carboxyl groups of glutamic or aspartic acid residues and forms more amine bonds under EDC cross-linking when compared to PS collagen. However, these results suggest that the B4P1HA and B5P0HA materials should be produced according to highest bio-stability and mechanical strength and, furthermore they may be suitable for artificial skin or drug delivery applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call