Abstract

The accessibility of the primary sensory neurons of the trigeminal system at stages throughout their development in avian and mammalian embryos and the ease with which these neurons can be studied in vivo has facilitated investigation of several fundamental aspects of neurotrophin biology. Studies of the timing and sequence of action of neurotrophins and the expression of neurotrophins and their receptors in this well characterised neuronal system have led to a detailed understanding of the functions of neurotrophins in neuronal development. The concepts of neurotrophin independent survival, neurotrophin switching and neurotrophin cooperativity have largely arisen from work on the trigeminal system. Moreover, in vitro studies of trigeminal neurons provided some of the first evidence that the neurotrophin requirements of sensory neurons are related to sensory modality. The developing trigeminal system has been studied most extensively in mice and chickens, each of which has particular advantages for understanding different aspects of neurotrophin biology. In this review, I will outline these advantages and describe some of the main findings that have arisen from this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.