Abstract

BackgroundThe myxosporean Myxidium giardi Cépède, 1906 was described infecting the kidney of the European eel, Anguilla anguilla (L.), having spindle-shaped myxospores and terminal sub-spherical polar capsules. Since then, numerous anguillid eels globally have been documented to have similar Myxidium infections. Many of these have been identified using the morphological features of myxospores or by the location of infection in the host, and some have been subsequently synonymised with M. giardi. Therefore, it is not clear whether M. giardi is a widely distributed parasite, infecting numerous species of eels, in multiple organs, or whether some infections represent other, morphologically similar but different species of myxosporeans. The aim of the present study was to assess the status of M. giardi infections in Icelandic eels, and related fish hosts in Malaysia and to use spore morphology and molecular techniques to evaluate the diversity of myxosporeans present.ResultsThe morphologies of the myxospores from Icelandic eels were very similar but the overall dimensions were significantly different from the various tissue locations. Myxospores from the kidney of the Malaysian tarpon, Megalops cyprinoides (Broussonet), were noticeably smaller. However, the SSU rDNA sequences from the different tissues locations in eels, were all very distinct, with percentage similarities ranging from 92.93% to as low as 89.8%, with the sequence from Malaysia being even more dissimilar. Molecular phylogenies consistently placed these sequences together in a clade that we refer to as the Paramyxidium clade that is strongly associated with the Myxidium clade (sensu stricto). We erect the genus Paramyxidium n. g. (Myxidiidae) to accommodate these histozoic taxa, and transfer Myxidium giardi as Paramyxidium giardi Cépède, 1906 n. comb. as the type-species.ConclusionsThere is not a single species of Myxidium (M. giardi) causing systemic infections in eels in Iceland. There are three species, confirmed with a robust phylogeny, one of which represents Paramyxidium giardi n. comb. Additional species probably exist that infect different tissues in the eel and the site of infection in the host fish is an important diagnostic feature for this group (Paramyxidium n. g. clade). Myxospore morphology is generally conserved in the Paramyxidium clade, although actual spore dimensions can vary between some species. Paramyxidium spp. are currently only known to infect fishes from the Elopomorpha.

Highlights

  • The myxosporean Myxidium giardi Cépède, 1906 was described infecting the kidney of the European eel, Anguilla anguilla (L.), having spindle-shaped myxospores and terminal sub-spherical polar capsules

  • The importance of the shape of myxospores and its relative usefulness in myxosporean taxonomy has been scrutinised in recent years, and it has been unambiguously demonstrated that numerous genera are polyphyletic in molecular phylogenetic analyses due to the use of spore morphology as the principal taxonomic measure [1,2,3]

  • One short rDNA sequence exists for M. giardi from the urinary system of A. anguilla from Scotland, and phylogenetic analyses place this in the freshwater urinary clade, with numerous other myxosporeans found infecting the urinary systems of fish, but none with a similar spore morphology [13]

Read more

Summary

Introduction

The myxosporean Myxidium giardi Cépède, 1906 was described infecting the kidney of the European eel, Anguilla anguilla (L.), having spindle-shaped myxospores and terminal sub-spherical polar capsules. The polyphyletic nature of some myxosporean genera in molecular analyses has occurred, in part, as our systematic framework for deciding which family and genus to place novel species has become less stringent over time, and gives priority to basic myxospore morphology over other characters [4] This is combined with the fact that there seems to be a general reluctance to establish new genera when necessary, with the historical preference being to further loosen the descriptive boundaries of existing genera [4]. Many descriptions of Myxidium spp. infecting eels have subsequently been synonymized with M. giardi, as less emphasis was placed on details such as the site of infection [11] and M. giardi was considered to have an almost worldwide distribution [12] It is not clear whether M. giardi is a widely distributed parasite infecting numerous species of eels, in multiple organs, or whether some infections represent other, morphologically similar, species of myxosporeans. One short rDNA sequence exists for M. giardi from the urinary system of A. anguilla from Scotland, and phylogenetic analyses place this in the freshwater urinary clade, with numerous other myxosporeans found infecting the urinary systems of fish, but none with a similar spore morphology [13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call