Abstract
In this work, the effect of copper, iron and cobalt oxides on electrochemical properties of lithiated NiO cathodes was reported in low temperature solid oxide fuel cell (LT-SOFC) with ceria-carbonate composite electrolyte. The modified lithiated NiO cathodes were characterized by XRD, DC conductivity, SEM and electrochemical measurements. In spite of lower conductivities of modified cathodes, Li–Ni–M (M = Cu, Fe, Co) oxides with the order of Li–Ni–Co oxide > Li–Ni–Fe oxide > Li–Ni–Cu oxide, compared with that without modification, the catalytic activities of all the Li–Ni–M oxides were improved. In particularly, cobalt oxide modification favors both charge transfer and gas diffusion for O2 reduction reaction as confirmed by AC impedance measurements. SEM micrographs show that grains aggregate with the modification of copper oxide or iron oxide, which may be responsible for the increased gas diffusion resistance. The results indicate that the lithiated NiO modified by cobalt oxide as cathode is an alternative to improve LT-SOFC performance with ceria-carbonate composite electrolyte.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.