Abstract
The low temperature oxidation of n-pentane with nitric oxide (NO) addition has been investigated at 500–800 K in an atmospheric jet stirred reactor (JSR). The molar fraction of NO in the mixture is varied between 0 to 1070 ppm to study its chemical sensitization effect on low temperature oxidation of both fuel lean and rich n-pentane/oxygen mixtures. N-pentane, O2, CO, CO2, CH2O, C2H4, CH3CHO, NO, and NO2 are quantified simultaneously, in-situ by using an electron impact molecular beam mass spectrometer (MBMS), a micro-gas chromatograph (µ-GC), and a sensitive mid-IR dual-modulation faraday rotation spectrometer (DM-FRS). The experimental results reveal that NO addition delays the onset temperature of low temperature oxidation of n-pentane between 550–650 K, but reduces the negative temperature coefficient (NTC) behavior in the NTC region (650–750 K) and dramatically shifts the onset of high temperature fuel oxidation to an intermediate temperature (750–800 K). A recently developed n-pentane/NOx model by using Reaction Mechanism Generation (RMG) and a new n-pentane/NOx model in the present work were used to predict the experimental results. The results show that the three distinct temperature-dependent characteristics of NO sensitized n-pentane oxidation are captured appropriately by these two models at both fuel rich and lean conditions, while the onset temperature of low temperature oxidation is not accurately predicted by these two models. It shows that the RMG model has a better prediction of the onset delay of n-pentane oxidation than Zhao's model, while Zhao's model performs better at NTC and intermediate temperature regions. Besides RO2 + NO, additional fuel/NOx reaction pathway, like R + NO2, RO + NO, and RO + NO2, and the interconversion reactions among NO, NO2, and HONO may need to be further studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Combustion and Flame
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.