Abstract

We report a new ab initio study of the acetylene T3 potential energy surface, which clarifies the nature of its energy minimum, and present computed equilibrium geometries and diabatic frequencies. This information enables the computation of harmonic vibrational overlap integrals of T3 vibrational levels with the S1 3nu3 state. The results of this calculation support the interpretation of two local perturbations of S1 3nu3, revealed in ultraviolet laser-induced fluorescence/surface electron ejection by laser excited metastables spectroscopy and Zeeman anticrossing measurements, respectively, as arising from two rotational submanifolds of a single T3 vibrational state. We present plausible assignments for this state as a guide for future experimental work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call