Abstract

A GaAs/AlGaAs/GaAs heterostructure metal-semiconductor-metal photodetector (HMSM) with an active area of 100 mu m*100 mu m was developed and studied. The measured risetime of the device is 30 ps. The measured falltime is as short as 23 ps. The observed ultrafast response is attributed to the reduction of both the carrier transit time and the device capacitance due to the incorporation of the AlGaAs barrier layer. The HMSM is found to have a smaller saturation capacitance and saturates at a much lower bias voltage in comparison with the conventional MSM photodetector (CMSM). At a bias of 10 V, the full width at half maximum (FWHM) of the temporal response of the HMSM is more than 20% smaller than that of the CMSM. In addition, it is found that the peak impulse response for the HMSM is substantially larger than that of the CMSM under the same operation condition. Two-dimensional and equivalent circuit analyses were carried out to interpret the observed phenomena and to provide insight into the underlying physics. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.