Abstract
A method is described for the sequential detergent and high ionic strength extraction of human amnion with the progressive enrichment of the intermediate filament (IF) cytoskeleton and its associated structures including hemidesmosomes (HD). TEM of the extracted epithelium in situ reveals IF bundles beneath the apical cell surface, around the nucleus and at the lateral edges of the cells where association with desmosomes occurs. IF bundles are also very prominent within basal cell processes where they loop through the cytoplasm adjacent to the HDs. A novel connecting filament network is observed running between the IFs and the hemidesmosomal dense plaque. The adjacent IF network contains both cytokeratin and vimentin, the latter revealed much more fully as a result of the extraction protocol. The hemidesmosomal plasma membrane contains integrin subunits alpha 6 and beta 4 and these are quantitatively retained as the basal cell surface during extraction, while nonjunctional plasma membrane is solubilised. Integrin beta 1 is found at the basolateral cell surface but, like actin, is extracted quantitatively and is not present in HDs. The extracted epithelial cells may be recovered by scraping and the IF network depolymerised to produce a particulate fraction containing short residual IFs, associated thin filaments and plaque material. This fraction contains immunoreactive cytokeratin and vimentin. Integrin alpha 6 beta 4 has been used as a biochemical criterion of the presence of HD material in the fraction. Both subunits are highly enriched. The fraction also contains the hemidesmosomal components HD1, BP230 and BP180. This method is likely to be useful in further characterisation of the HD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.