Abstract

Computer simulations are as vital to our studies of biological systems as experiments. They bridge and rationalize experimental observations, extend the experimental "field of view", which is often limited to a specific time or length scale, and, most importantly, provide novel insights into biological systems, offering hypotheses about yet-to-be uncovered phenomena. These hypotheses spur further experimental discoveries. Simplified molecular models have a special place in the field of computational biology. Branded as less accurate than all-atom protein models, they have offered what all-atom molecular dynamics simulations could not--the resolution of the length and time scales of biological phenomena. Not only have simplified models proven to be accurate in explaining or reproducing several biological phenomena, they have also offered a novel multiscale computational strategy for accessing a broad range of time and length scales upon integration with traditional all-atom simulations. Recent computer simulations of simplified models have shaken or advanced the established understanding of biological phenomena. It was demonstrated that simplified models can be as accurate as traditional molecular dynamics approaches in identifying native conformations of proteins. Their application to protein structure prediction yielded phenomenal accuracy in recapitulating native protein conformations. New studies that utilize the synergy of simplified protein models with all-atom models and experiments yielded novel insights into complex biological processes, such as protein folding, aggregation and the formation of large protein complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.