Abstract

Spectroscopy methods were used for studying the dynamics of neutral plasma component in current sheets formed in two-dimensional (2D) and three-dimensional (3D) magnetic configurations during discharge in helium. It has been ascertained that when the current sheet is formed in the 2D magnetic field, flows of fast suprathermal helium atoms appear in it, which are directed along the current sheet width (the largest of the sheet transverse dimensions). It is shown that helium atoms can acquire the directed energy Wx due to the resonance charge exchange of accelerated ions in the current sheet plasma. The energy of directed motion of helium atoms can reach Wx ≈ (480 ± 120) eV, which is ~20 times higher than the temperature of helium atoms Ta ≈ (20 ± 2) eV at the same times. During the current sheet formation in the 3D magnetic configuration, fast helium atoms were not observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call