Abstract

Coconut shell based biochar was modified by ultraviolet irradiation with UV light at a wavelength of 365 nm in order to enhance the adsorption capacity for volatile organic compounds (VOCs). The breakthrough curves of biochars for adsorbing two typical VOCs (benzene and toluene) were examined. The results showed that the adsorption capacity of modified biochar was greatly increased. The saturation adsorption capacity of modified biochar for benzene and toluene was increased to 122.80 mg·g<sup>-1</sup> and 236.36 mg·g<sup>-1</sup>, comparing to that of the pristine biochar (7.27 mg·g<sup>-1</sup> and 7.98 mg·g<sup>-1</sup>, respectively). The breakthrough time of modified biochar for benzene and toluene (390 min and 620 min) was also drastically prolonged as compared to the raw biochar (1 min and 2 min). The characterization analysis of biochars suggested that the carboxylic groups and external surface area were largely enriched, which might be the main factor responsible for the enhanced adsorption of the two VOCs on the modified biochar. The processes of adsorbing benzene and toluene at different concentrations on modified biochar were fitted by Yoon-Nelson, Thomas and BDST models. The result demonstrated that these three models could provide good fitting and the correlation coefficients were all above 0.992. The TG-DTG result proved that ultraviolet irradiation had little effect on the thermal stability of biochar. The modified biochar after adsorption saturation could be reused after thermal regeneration and the regenerated char also had high adsorption capacity after five times of repeated utilization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.