Abstract

In this review, the X-ray topography results of various types of single crystal diamonds (SCDs) are reported. Dislocations and dislocation bundles are present in all types of SCDs, the only exception being type IIa high-pressure, high-temperature (HPHT) SCDs. The technology of growing HPHT type IIa SCDs has advanced to a level where the samples show almost no dislocations or dislocation bundles. However, very few groups appear to have perfected the process of HPHT growth of type IIa SCDs. There appears to be a characteristic difference in the dislocations present in type Ib HPHT and chemical vapor deposited (CVD) SCDs. The dislocations in CVD SCDs are mostly in aggregate form, while in HPHT type Ib diamonds there are line dislocations which propagate in <111> or <112> directions. The CVD SCDs growth appears to be in the early stage in terms of the control of dislocations and dislocation bundles, compared to other semiconductor wafers. The dislocations and dislocation bundles and aggregates in SCDs limit their applications in electronic and optical devices. For instance, high-power laser windows must have low dislocations and dislocation bundles. For electronic devices such as high-power diodes, dislocations reduce the breakdown voltage of SCDs, limiting their applications. The knowledge of dislocations, their identification and their origin are, therefore, of utmost importance for the applications of SCDs, be they HPHT or CVD grown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.