Abstract

As microscopic transport models usually have difficulties to deal with in-medium effects in heavy-ion collisions, we present an alternative approach that uses coarse-grained output from transport calculations with the UrQMD model to determine thermal dilepton emission rates. A four-dimensional space-time grid is set up to extract local baryon and energy densities, respectively temperature and baryon chemical potential. The lepton pair emission is then calculated for each cell of the grid using thermal equilibrium rates. In the current investigation we inlcude the medium-modified r spectral function by Eletsky et al., as well as contributions from the QGP and four-pion interactions for high collision energies. First dielectron invariant mass spectra for Au+Au collisions at 1.25 AGeV and for dimuons from In+In at 158 AGeV are shown. At 1.25 AGeV a clear enhancement of the total dilepton yield as compared to a pure transport result is observed. In the latter case, we compare our outcome with the NA60 dimuon excess data. Here a good agreement is achieved, but the yield in the low-mass tail is underestimated. In general the results show that the coarse-graining approach gives reasonable results and can cover a broad collision-energy range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call