Abstract

Postischemic damage is caused partially by oxygen free radical-mediated injury. This study will show that (1) crystalloid cardioplegia with room air oxygen is deleterious because it is devoid of free radical scavengers and (2) blood cardioplegia limits damage because it contains endogenous free radical scavengers in red blood cells. Thirty-two dogs underwent 2 hours of ligation of the left anterior descending coronary artery followed by 20 minutes of regional blood cardioplegic reperfusion on bypass. Ten dogs received only the blood cardioplegic solution (containing its endogenous free radical scavengers); five received initial blood cardioplegia (5 minutes) with endogenous free radical scavengers (catalase and glutathione peroxidase) blocked by aminotriazole and N-ethylmaleimide, respectively; 12 received initial crystalloid cardioplegic solution oxygenated by room air (oxygen tension = 150 mm Hg); seven without and five with exogenous free radical scavengers (superoxide dismutase, catalase, coenzyme Q10); five received initial deoxygenated crystalloid cardioplegic solution (oxygen tension = 6 mm Hg); and five received deoxygenated crystalloid cardioplegic solution. Blood cardioplegia with endogenous free radical scavengers produced the best recovery of systolic shortening (69% systolic shortening) and resulted in the least histochemical damage (11% triphenyltetrazolium chloride nonstaining). The worst recovery and most damage occurred if blood cardioplegia was preceded by oxygenated crystalloid cardioplegia (3% systolic shortening, 48% triphenyltetrazolium chloride nonstaining; p less than 0.05 versus blood cardioplegia) or if free radical scavengers were blocked in the initial period of blood cardioplegia (3% systolic shortening, 41% triphenyltetrazolium chloride nonstaining; p less than 0.05 versus blood cardioplegia). Conversely, deoxygenation or supplementation of oxygenated crystalloid cardioplegic solution with exogenous free radical scavengers restored 60% systolic shortening (p less than 0.05 versus oxygenated crystalloid cardioplegia) and 54% systolic shortening (p less than 0.05 versus oxygenated crystalloid cardioplegia) and reduced damage to 34% and 21% (both p less than 0.05 versus oxygenated crystalloid cardioplegia). Blood cardioplegic solutions containing their own endogenous free radical scavengers are superior to crystalloid cardioplegic solutions, because they limit oxygen-mediated perfusion damage and restore contractile function. Initial crystalloid cardioplegic washout negates the salutary effect of blood cardioplegia. Exogenous free radical scavenger supplementation or deoxygenation of the cardioplegic reperfusate is necessary only if crystalloid cardioplegia is used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call