Abstract

The arginine-binding protein (ArgBP) from the hyperthermophilic eubacterium Thermotoga maritima (TmArgBP) is responsible for arginine transport through the bacterial cell membrane. The protein binds a single molecule of L-arginine, which results in conformational changes due to hinge bending. Thereby, TmArgBP acquires one of two possible conformations: open (without the presence of the arginine ligand) and closed (in the presence of the arginine ligand). Here we report a molecular dynamics study of the influence of the presence or absence of the ligand on the dynamics of TmArgBP, using the coarse-grained UNRES force field. The results of our studies indicate that binding of the arginine ligand promotes a closed conformation, which agrees with experimental data. However, the sensitivity of the TmArgBP conformation to the presence of arginine decreases and the protein becomes more flexible with increasing temperature, which might be related to the functionality of this protein in the thermophilic organism T. maritima.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.