Abstract

The earlier-developed ab initio model and the kinetic Monte Carlo method (KMCM) are used to simulate precipitation in a number of iron-copper alloys with different copper concentrations x and temperatures T. The same simulations are also made using the improved version of the earlier-suggested stochastic statistical method (SSM). The results obtained enable us to make a number of general conclusions about the dependencies of the decomposition kinetics in Fe-Cu alloys on x and T. We also show that the SSM describes the precipitation kinetics in a fair agreement with the KMCM, and employing the SSM in conjunction with the KMCM enables us to extend the KMC simulations to the longer evolution times. The results of simulations seem to agree with available experimental data for Fe-Cu alloys within statistical errors of simulations and the scatter of experimental results. Comparison of results of simulations to experiments for some multicomponent Fe-Cu-based alloys enables us to make certain conclusions about the influence of alloying elements in these alloys on the precipitation kinetics at different stages of evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.