Abstract

This article describes studies on the regioselective acetal protection of monosaccharide-based diols using chiral phosphoric acids (CPAs) and their immobilized polymeric variants, (R)-Ad-TRIP-PS and (S)-SPINOL-PS, as the catalysts. These catalyst-controlled regioselective acetalizations were found to proceed with high regioselectivities (up to >25:1 rr) on various d-glucose-, d-galactose-, d-mannose-, and l-fucose-derived 1,2-diols and could be carried out in a regiodivergent fashion depending on the choice of chiral catalyst. The polymeric catalysts were conveniently recycled and reused multiple times for gram-scale functionalizations with catalytic loadings as low as 0.1 mol %, and their performance was often found to be superior to the performance of their monomeric variants. These regioselective CPA-catalyzed acetalizations were successfully combined with common hydroxyl group functionalizations as single-pot telescoped procedures to produce 32 regioisomerically pure differentially protected mono- and disaccharide derivatives. To further demonstrate the utility of the polymeric catalysts, the same batch of (R)-Ad-TRIP-PS catalyst was recycled and reused to accomplish single-pot gram-scale syntheses of 6 differentially protected d-glucose derivatives. The subsequent exploration of the reaction mechanism using NMR studies of deuterated and nondeuterated substrates revealed that low-temperature acetalizations happen via a syn-addition mechanism and that the reaction regioselectivity exhibits strong dependence on the temperature. The computational studies indicate a complex temperature-dependent interplay of two reaction mechanisms, one involving an anomeric phosphate intermediate and another via concerted asynchronous formation of an acetal, that results in syn-addition products. The computational models also explain the steric factors responsible for the observed C2 selectivities and are consistent with experimentally observed selectivity trends.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.