Abstract

The photophysical properties of all-trans-retinal (RAL) have been extensively studied because of the importance of the retinoids in the visual process. However, little information is available regarding the participation of RAL in photochemical transformations such as photoxidation. RAL is one of several native chromophores that have been suggested to act as photosensitizers of damage in the human retina, and this damage would likely occur through oxidative pathways. Time-resolved and steady state techniques have been used to examine the photoreactivity of RAL toward several suitable substrates. The lifetime of the RAL triplet excited state is observed to decrease with increasing concentration of the well-known electron and hydrogen atom donors, 2,3,5,6-tetramethyl-1,4-phenylenediamine (DAD), hydroquinone (HQ), methylhydroquinone (MHQ), 2,3-dimethylhydroquinone (DMHQ) and trimethylhydroquinone (TMHQ), although the bimolecular rate constants for the reaction are much less than that of diffusion controlled (2.9 x 10(7) M-1 s-1, 1.2 x 10(5) M-1 s-1, 1.2 x 10(5) M-1 s-1, 1.5 x 10(5) M-1 s-1 and 1.6 x 10(6) M-1 s-1, for DAD, HQ, MHQ, DMHQ and TMHQ, respectively). In the presence of the donors, new absorptions grow concomitant with the decay of the triplet excited state, and for DAD and TMHQ, the observed spectra are similar to the spectra of p-phenylenediamine and TMHQ radicals. Irradiation of RAL in argon-saturated methanol results in fairly efficient photobleaching of RAL and in the formation of two new compounds having absorption spectra that are shifted below 300 nm. Irradiation of RAL in argon-saturated acetonitrile also results in photobleaching of RAL, but the reaction proceeds at a slower rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.