Abstract

Quantitative studies are conducted into the absolute pressure values of the acoustical and shock waves generated and propagating in a biotissue under pulsed (tau p = 50 ns) UV (lambda = 308 nm) laser irradiation (below and above the ablation threshold). Powerful (several hundreds of bars in pressure) high-frequency (f approximately 10(7) Hz) acoustic compression and rarefaction pulses are found to be generated in the biotissue. The amplitudes and profiles of the acoustic pulses developing in atherosclerotic human aorta tissues and an aqueous CuCl2 solution under laser irradiation are investigated as a function of the laser pulse energy fluence. The results obtained point to the absence of the cold spallation of the objects of study by rarefaction waves. Based on experimental data, the rise rates, pressure gradients, and propagation velocities of shock waves in the biotissue are calculated. The experimental data are found to agree well with the theoretical estimates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.