Abstract

EuAl4 orders antiferromagnetically at TN ≈ 16 K with an effective magnetic moment of 8.02 μB. In the paramagnetic phase, the magnetic susceptibility of EuAl4 follows the Curie-Weiss law with a positive Curie-Weiss temperature θP = +14 K. The antiferromagnetic state is changed into the field induced ferromagnetic state at a critical field Hc of approximately 2 T. In order to microscopically investigate the magnetic and electronic properties in EuAl4, the NMR measurements of EuAl4 have been carried out at temperatures between 2 and 300 K, applying an external magnetic field of approximately 6.5 T. The 27Al NMR spectra corresponding to Al(I) and Al(II) sites are obtained. From the 27Al NMR spectra, the isotropic part Kiso and anisotropic part Kaniso of Knight shift, and nuclear quadrupole frequncy νQ are obtained. The Kiso and Kaniso shift to negative side with decreasing temperature due to the RKKY interaction. These temperature dependences follow the Curie-Weiss law with θP = +14 K, which is consistent with that of the magnetic susceptibility. From the K – χ plot, the values of the hyperfine fields Hhf_iso and Hhf_aniso are -3.231 and -0.162 kOe/μB for Al(I) site, and -1.823 and -0.264 kOe/μB for Al(II) site, respectively. The values of νQ of 27Al nucleus for Al(I) and Al(II) sites are approximately 0.865 and 0.409 MHz, respectively. The nuclear relaxation time T1 of 27Al NMR for both sites is almost constant in the paramagnetic phase, while the value of 1/T1 is abruptly decreased in the ordered ferromagnetic state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.