Abstract

Detection of a periodic signal hidden in noise is frequently a goal in astronomical data analysis. This paper does not introduce a new detection technique, but instead studies the reliability and efficiency of detection with the most commonly used technique, the periodogram, in the case where the observation times are unevenly spaced. This choice was made because, of the methods in current use, it appears to have the simplest statistical behavior. A modification of the classical definition of the periodogram is necessary in order to retain the simple statistical behavior of the evenly spaced case. With this modification, periodogram analysis and least-squares fitting of sine waves to the data are exactly equivalent. Certain difficulties with the use of the periodogram are less important than commonly believed in the case of detection of strictly periodic signals. In addition, the standard method for mitigating these difficulties (tapering) can be used just as well if the sampling is uneven. An analysis of the statistical significance of signal detections is presented, with examples

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.