Abstract

A fixed-bed photocatalytic reactor equipped with a cylindrical parabolic light concentrator was studied to remove organic dyes from water using natural volcanic ashes particles and nanostructured titania supported on volcanic ashes as photocatalytic materials. The influences of flow rate, photocatalyst and photocatalytic material adsorption capacity were studied. A fixed-bed photocatalytic reactor was designed and built in the laboratory; a methylene blue aqueous solution, used as model compound for dye contaminated water, was fed into the reactor. Methylene blue destruction efficiencies were monitored spectrophotometrically. Combined effects of dye adsorption and photodecomposition on photocatalyst were studied and compared by infrared spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.