Abstract

The increase in greenhouse gas emissions, as well as the risk of fossil fuel depletion, has prompted a transition to electric transportation. The European Union aims to substantially reduce pollutant emissions by 2035 through the use of renewable energies. In aviation, this transition is particularly challenging, mainly due to the weight of onboard equipment. Traditional electric motors with radial magnetic flux have been replaced by axial magnetic flux motors with reduced weight and volume, high efficiency, power, and torque. These motors were initially developed for electric vehicles with in-wheel motors but have been adapted for aviation without modifications. Worldwide, there are already companies developing propulsion systems for various aircraft categories using such electric motors. One category of aircraft that could benefit from this electric motor development is traditionally constructed training aircraft with significant remaining flight resource. Electric repowering would allow their continued use for pilot training, preparing them for future electrically powered aircraft. This article presents a study on the feasibility of repowering a classic training aircraft with an electric propulsion system. The possibilities of using either a battery or a hybrid source composed of a battery and a fuel cell as an energy source are explored. The goal is to utilize components already in production to eliminate the research phase for specific aircraft components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call