Abstract

Some analyses are carried out with regard to canopy interception processes during rainfall events based on a tank model. A hypothesis, rainfall interception rate is proportional to the product of potential evaporation and rainfall intensity, is formed from past experimental data, and is applied to the data in this study. Computational equations are proposed to the interception rate and accumulative interception loss under constant rainfall intensity. Data from the Shirakawatani experimental forested catchment are used in order to examine the relationship between the interception rate and rainfall intensity, the ratio of the interception rate to rainfall intensity and potential evaporation, accumulative interception loss and the rainfall duration, and accumulative interception loss and accumulative rainfall. These regression relations show that interception processes are described by rainfall intensity and potential evaporation. An equation relating the aerodynamic resistance in the Penman–Monteith equation to rainfall intensity is proposed to explain the fact that the interception rate exceeds net radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.