Abstract
Discipline-based education researchers have a natural laboratory—classrooms, programs, colleges, and universities. Studies that administer treatments to multiple sections, in multiple years, or at multiple institutions are particularly compelling for two reasons: first, the sample sizes increase, and second, the implementation of the treatments can be intentionally designed and carefully monitored, potentially negating the need for additional control variables. However, when studies are implemented in this way, the observations on students are not completely independent; rather, students are clustered in sections, terms, years, or other factors. Here, I demonstrate why this clustering can be problematic in regression analysis. Fortunately, nonindependence of sampling can often be accounted for with random effects in multilevel regression models. Using several examples, including an extended example with R code, this paper illustrates why and how to implement random effects in multilevel modeling. It also provides resources to promote implementation of analyses that control for the nonindependence inherent in many quasi-random sampling designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.