Abstract

PurposeThe purpose of this paper is to investigate students' adoption intention (ADI) and actual usage (ATU) of artificial intelligence (AI)-based teacher bots (T-bots) for learning using technology adoption model (TAM) and context-specific variables.Design/methodology/approachA mixed-method design is used wherein the quantitative and qualitative approaches were used to explore the adoption of T-bots for learning. Overall, 45 principals/directors/deans/professors were interviewed and NVivo 8.0 was used for interview data analysis. Overall, 1,380 students of higher education institutes were surveyed, and the collected data was analyzed using the Partial Least Squares Structural Equation Modeling (PLS-SEM) technique.FindingsThe T-bot's ADI’s antecedents found were perceived ease of use, perceived usefulness, personalization, interactivity, perceived trust, anthropomorphism and perceived intelligence. The ADI influences the ATU of T-bots, and its relationship is negatively moderated by stickiness to learn from human teachers in the classroom. It comprehends the insights of senior authorities of the higher education institutions in India toward the adoption of T-bots.Practical implicationsThe research provides distinctive insights for principals, directors and professors in higher education institutes to understand the factors affecting the students' behavioral intention and use of T-bots. The developers and designers of T-bots need to ensure that T-bots are more interactive, provide personalized information to students and ensure the anthropomorphic characteristics of T-bots. The education policymakers can also comprehend the factors of T-bot adoption for developing the policies related to T-bots and their implications in education.Originality/valueT-bot is a new disruptive technology in the education sector, and this is the first step in exploring the adoption factors. The TAM model is extended with context-specific factors related to T-bot technology to offer a comprehensive explanatory power to the proposed model. The research outcome provides the unique antecedents of the adoption of T-bots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.