Abstract

This article presents the results of connecting an educational data mining techniques to the academic performance of students. Three classification models (Decision Tree, Random Forest and Deep Learning) have been developed to analyze data sets and predict the performance of students. The projected submission of the three classificatory was calculated and matched. The academic history and data of the students from the Office of the Registrar were used to train the models. Our analysis aims to evaluate the results of students using various variables such as the student's grade. Data from (221) students with (9) different attributes were used. The results of this study are very important, provide a better understanding of student success assessments and stress the importance of data mining in education. The main purpose of this study is to show the student successful forecast using data mining techniques to improve academic programs. The results of this research indicate that the Decision Tree classifier overtakes two other classifiers by achieving a total prediction accuracy of 97%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.