Abstract

This work pursues to find out patterns of characteristics and behaviors of students. Thus, it is presented an approach to mine repositories of student models (SM). The source information embraces students’ personal information and assessment of the use of a Web-based educational system (WBES) by students. In addition, the repositories reveal a profile composed by personal attributes, cognitive skills, learning preferences, and personality traits of a sample of students. The approach mines such repositories and produces several clusters. One cluster represents volunteers who tend to abandon. Another group clusters people who fulfill their commitments. It is concluded that: educational data mining (EDM) produces some findings to depict students that could be considered for authoring content and sequencing teaching-learning experiences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.