Abstract

Zooplankton often migrate vertically to deeper dark water during the day to avoid visual predators such as fish, a process which can strengthen benthic–pelagic coupling. In the Gulf of Finland, Baltic Sea, a pronounced hypoxic layer develops when there is an inflow of anoxic bottom water from the Central Baltic Sea, which could be a barrier for vertical migrants. Here, we report an acoustic study of the distributions of crustacean zooplankton (mysid shrimp and the copepod Limnocalanus macrurus), gelatinous zooplankton (Aurelia aurita) and fish. Zooplankton trawl nets were used to ground-truth acoustic data. Vertical profiles of oxygen concentration were taken, and the physiological impact of hypoxia on mysids was investigated using biochemical assays. We hypothesised that the vertical distribution of zooplankton and fish would be significantly affected by vertical heterogeneity of oxygen concentrations because anoxia and hypoxia are known to affect physiology and swimming behaviour. In addition, we hypothesised that mysids present in areas with hypoxia would exhibit a preparatory antioxidant response, protecting them from oxidative damage during migrations. The acoustic data showed peaks of crustacean zooplankton biomass in hypoxic ( 75 m), whereas fish shoals and A. aurita medusae were found in normoxic (5–6 mL L−1) upper water layers (<40 m), with individual fish in deeper water excepting that rule. Mysid shrimp from areas with hypoxia had significantly enhanced antioxidant potential compared with conspecifics from areas with no hypoxia and had no significant indications of oxidative damage. We conclude that mysids can protect themselves from oxidative damage, enabling them to inhabit hypoxic water. Our data suggest that hypoxic and low oxygen zones (up to 4 mL L−1) may provide some zooplankton species with a refuge from visual predators such as fish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.