Abstract

The principal objective of the space experiment, BRIC-AUX on STS-95, was the integrated analysis of the growth and development of etiolated pea and maize seedlings in space, and the effect of microgravity conditions in space on auxin polar transport in the segments. Microgravity conditions in space strongly affected the growth and development of etiolated pea and maize seedlings. Etiolated pea and maize seedlings were leaned and curved during space flight, respectively. Finally the growth inhibition of these seedlings was also observed. Roots of some pea seedlings grew toward the aerial space of Plant Growth Chamber. Extensibilities of cell walls of the third internode of etiolated pea epicotyls and the top region of etiolated maize coleoptiles which were germinated and grown under microgravity conditions in space were significantly low. Activities of auxin polar transport in the second internode segments of etiolated pea seedlings and coleoptile segments of etiolated maize seedlings were significantly inhibited and extremely promoted, respectively, under microgravity conditions in space. These results strongly suggest that auxin polar transport as well as the growth and development of plants is controlled under gravity on the earth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.