Abstract

Wastewater phosphorus (P) released into natural water bodies such as lakes and rivers, can cause water pollution as a result of eutrophication. If this P is effectively removed from wastewaters and economically recovered for use as fertilisers, not only can the water pollution be controlled, but also reduce the anticipated global shortage of P. This scarcity will result from the natural phosphate rock reserve being exhausted. Three experiments were conducted using membrane-bioreactor effluent (MBR, 35 mg PO4/L) and reverse osmosis concentrate (ROC, 10 mg PO4/L) waters to supply phosphate, and sea water (1530 mg Mg/L) to supply Mg for the production of struvite. The phosphate in the MBR and ROC was concentrated approximately 15 times by adsorption onto an ion exchange resin column followed by desorption. Struvite was precipitated by mixing the desorbed solution with seawater and NH4Cl. The chemical composition and mineral structure of the precipitates agreed with those of the reference struvite. When Ca in seawater (300 mg Ca/L) was removed before mixing the water with MBR or ROC, the purity of the struvite improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.