Abstract
The paper studies the contact interaction of the components in powders Fe-(Cu + Sn), Fe-(Cu + Sn + P + Pb), and Fe + B-(Cu + Sn + P + Pb) during sintering in hydrogen at 920 °C. It is shown that this interaction is responsible for the formation of both the interphase boundary and the general structure that defines the performance characteristics of an antifriction material. The interface and the phase and chemical composition of the products of interaction are examined. It is established that the powder composition Fe + Cu + Sn + P + B + Pb sintered in hydrogen at 920 °C is a microheterogeneous material whose matrix, which takes up the major load during friction, includes two phases: one based on iron alloyed with boron (Fe2B), copper, tin, and phosphorus and the other based on copper including tin in the form of α-solid solution, phosphorus in the form of Cu3P, and iron. Lead uniformly distributed over the matrix volume is the antifriction component of the material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.