Abstract
Abstract With this study, correlations in the structuring step of pin-like joining were derived. Increased friction energy due to higher amplitude or force leads to a reduction in structuring time. Changes in thermo-mechanical properties for humid specimens result in increased process times. The theoretical geometry of the pin-like structures is well reproduced in the lower pin area, regardless of the process control. In the upper pin area, increased force and amplitude results in increased defects and air inclusions as a result of an accelerate and more inhomogeneous pin formation. Humidity does not affect the general pin geometry, but should be avoided due to increased air inclusions that can weaken the structure. For the multi-material joints, high bond strengths of up to 30 % of the base material (max. 50 % possible with the geometry used) can be achieved. Therefore, a minimum undercut is required. Once this is reached, the pin defects and the corresponding pin-foot ratio are decisive for the resulting bond quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.