Abstract
This paper considers a topos-theoretic structure for the interpretation of co-constructive logic for proofs and refutations following. It is notoriously tricky to define a proof-theoretic semantics for logics that adequately represent constructivity over proofs and refutations. By developing abstractions of elementary topoi, we consider an elementary topos as structure for proofs, and complement topos as structure for refutation. In doing so, it is possible to consider a dialogue structure between these topoi, and also control their relation such that classical logic (interpreted in a Boolean topos) is simulated where proofs and refutations are conclusive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.