Abstract

In this article we present a structured approach to formal hardware verification by modeling circuits at the register-transfer level using a restricted form of higher-order logic. This restricted form of higher-order logic is sufficient for obtaining succinct descriptions of hierarchically designed register-transfer circuits. By exploiting the structure of the underlying hardware proofs and limiting the form of descriptions used, we have attained nearly complete automation in proving the equivalences of the specifications and implementations. A hardware-specific tool called MEPHISTO converts the original goal into a set of simpler subgoals, which are then automatically solved by a general-purpose, first-order prover called FAUST. Furthermore, the complete verification framework is being integrated within a commercial VLSI CAD framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.