Abstract
Based on hybridization chain reaction (HCR) and fluorescence synergism, a novel aptasensor for tobramycin was successfully constructed. Tobramycin competed with cDNA-FAM to bind aptamers immobilized on magnetic beads. After magnetic separation, the released cDNA-FAM acted as initiator to trigger HCR amplification, thus the fluorescence was significantly enhanced due to binding of SYBR Green Ⅰ (SGI) to the formed long double-stranded DNA and the synergistic fluorescence of FAM. In the absence of tobramycin, the initiator was magnetically separated and no HCR occurred, more importantly, graphene oxide can quench the fluorescence of excessive hairpins/SGI and cDNA-FAM, so almost no background signal was detected. This aptasensor can monitor tobramycin in the range of 0.3-50μM with low detection limit of 17.37nM. Due to the potential generality of structure-switching aptamers and effectiveness of fluorescence synergism, this enzyme-free amplification strategy can be extended to other applications by rational design of nucleic acid sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.