Abstract
The adenosine triphosphate (ATP)-dependent transport system is a major determinant of canalicular bile acid secretion. The system transports bile acids and neither organic cations nor non-bile acid organic anions, such as glucuronides or glutathione adducts. To define the structural specificity of the ATP-dependent system, the authors examined the ability of various bile acids to inhibit ATP-dependent taurocholate transport by rat liver canalicular membrane vesicles. Only bile acids with a negative charge inhibited transport, which was unaffected by side chain length. Conjugated, but not unconjugated, mono- and di-hydroxy bile acids inhibited transport. The presence of 7 alpha- and 12 alpha-hydroxylation also influenced inhibition of ATP-dependent taurocholate transport. Inhibition of transport by bile acids was kinetically competitive. These results suggest that the canalicular ATP-dependent bile acid transport system depends on bile acid side chain charge, conjugation, and hydroxylation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.