Abstract

Among the various roles of zinc discovered to date, its exogenous activity as an insulin mimetic agent stands as a contemporary challenge currently under investigation and a goal to pursue in the form of a metallodrug against type 2 Diabetes Mellitus. Poised to investigate the adipogenic potential of Zn(II) and appropriately configure its coordination sphere into well-defined anti-diabetic forms, (a) a series of new well-defined ternary dinuclear Zn(II)–L (L=Schiff base ligands with a variable number of alcoholic moieties) compounds were synthesized and physicochemically characterized, (b) their cytotoxicity and migration effect(s) in both pre- and mature adipocytes were assessed, (c) their ability to effectively induce cell differentiation of 3T3-L1 pre-adipocytes into mature adipocytes was established, and (d) closely linked molecular targets involving or influenced by the specific Zn(II) forms were perused through molecular biological techniques, cumulatively delineating factors involved in Zn(II)-induced adipogenesis. Collectively, the results (a) reveal the significance of key structural features of Schiff ligands coordinated to Zn(II), thereby influencing its (a)toxicity behavior and insulin-like activity, (b) project molecular targets influenced by the specific forms of Zn(II) formulating its adipogenic potential, and (c) exemplify the interwoven relationship between Zn(II)–L structural speciation and insulin mimetic biological activity, thereby suggesting ways of fine tuning structure-specific zinc-induced adipogenicity in future efficient antidiabetic drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call