Abstract

Bakaninbreen, Svalbard, started to surge during 1985–86, and developed a surge front up to 60 m high. Associated with down-glacier propagation of this surge front was the formation of shear zones and thrust faults, some of which revealed basally derived debris at the glacier surface. Hot water drilling and sampling of basal material showed the glacier bed to be soft sediment more than 1 m thick. A high-resolution ground-penetrating radar (GPR) survey at 100 MHz was conducted along three 500 m lines parallel to glacier flow on the surge front. The aims were to investigate the internal geometry of the thrust features, and the processes of entrainment of basal debris into bulk glacier ice.A strong linear reflector was seen on the survey, but it is about 15–20 m above the bed as identified from drilling depths. It probably represents the upper interface of a layer of debris-rich basal ice. Several extensive englacial reflectors were interpreted as debris-laden emergent thrust features, varying in thickness from 0.1 to 1.1 m. These features were mapped at the glacier surface, and drilling and sediment sampling verified the interpretation. Other englacial features included regions of incipient thrusting at the basal reflector, and an extensive region of scattering up to 30 m above the basal reflector that we interpret as folds, or blind thrusts that terminate englacially. Our results clearly demonstrate the potential of GPR for mapping internal glacial structure, and suggest that thrusting is an important process by which sediment is incorporated into glacier ice in the highly compressive region at the surge front.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call