Abstract

Strict pharmacological selectivity in families of structurally related ligands and receptors may result from a key process in evolution aiming at increasing diversity in neurotransmission. An intriguing example of such exclusive specificity can be found in the newly discovered orphanin FQ (OFQ) system when it is compared with the opioid system. Both OFQ and its receptor share a high degree of sequence similarity to the opioid peptides and their corresponding receptors, respectively. However, OFQ does not activate opioid receptors, nor do the opioid peptides elicit biological activity at the OFQ receptor. We have therefore investigated the basis for the inherent selectivity of the primary structures of OFQ and dynorphin A, its closest counterpart. A series of truncated and/or chimeric peptides led to the conclusion that both peptides contain domains which establish their pharmacological selectivity. In the OFQ molecule we could delineate a domain that prevents its ability to activate the kappa-opioid receptor by apparently repelling its binding. In both peptides the selectivity-generating domains are composed of single residues in key positions together with short stretches of amino acids which do not overlap. To prove this concept, we designed a universal agonist and found it active at both the OFQ receptor and the kappa-opioid receptor. Our observations suggest that a coordinated mechanism of evolution has separated the orphanin FQ system from the opioid system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.