Abstract

Nanoclusters have been emerging as potential building blocks for advanced nanostructured materials with desired catalytic, magnetic, and electronic properties. However, determining the structure of doped atomic clusters encounters many difficulties. A powerful approach to assign the ground state geometries of atomic clusters has been the comparison the recorded vibrational infrared spectra with the corresponding computed ones. In this work, we theoretically investigate the vibrational infrared spectra of the ground-state structures of AgnCr (n=2-12) clusters using density functional theory (DFT) calculations. The results of the investigation are useful for in-depth studies on size growth as well as experiments for determining the cluster structures in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call