Abstract

Diiron complexes containing pyridyl-phosphine ligands, that is, (mu-pdt)[Fe(2)(CO)(5)L] (pdt = S(CH(2))(3)S, L = Ph(2)PCH(2)Py, Ph(2)PPy, ) and (micro-pdt)[Fe(CO)(2)(PMe(3))][Fe(CO)(2)L] (L = Ph(2)PCH(2)Py, Ph(2)PPy, ) were prepared as model complexes of the [FeFe]-hydrogenase active site. Protonation of and by HOTf afforded the pyridyl-nitrogen protonated products [H(N)][OTf] and [H(N)][OTf], respectively. The molecular structures of, as well as [H(N)][OTf] and [H(N)][OTf] were confirmed by X-ray diffraction studies, which show that the Ph(2)PCH(2)Py ligand occupies the basal position both in and its protonated species [H(N)][OTf], while the Ph(2)PPy ligand prefers the apical position in and [H(N)][OTf]. The double protonation process of complex was monitored by in situ IR, (1)H and (31)P NMR spectroscopy at low temperature. The spectroscopic evidence indicates that the protonation of occurs first at the Fe-Fe bond and then at the pyridyl-nitrogen atom. Cyclic voltammograms reveal that protonation of and results in a considerable decrease in the overpotential for electrocatalytic proton reduction in the presence of HOTf, while the efficiency is not influenced by protonation. The electrocatalytic efficiency of for proton reduction in the presence of HOAc in CH(3)CN-H(2)O (50 : 1, v/v) is 5 times higher than that in pure CH(3)CN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.