Abstract

We have investigated how several parameters can affect the results of a collision between an extragalactic jet and a dense, intergalactic cloud, through a series of hydrodynamic simulations. Such collisions are often suggested to explain the distorted structures of some radio jets. However, theoretical studies of this mechanism are in conflict over whether it can actually reproduce the observations. The parameters are the Mach number, and the relative densities of the jet and the cloud to the ambient medium. Using a simple prescription we have produced synthetic radio images for comparison with observations. These show that a variety of structures may be produced from simple jet-cloud collisions. We illustrate this with a few examples, and examine the details in one case. In most cases we do not see a clear, sustained deflection. Lighter jets are completely disrupted. The most powerful jets produce a hotspot at the impact which outshines any jet emission and erode the cloud too quickly to develop a deflected arm. It appears that moderate Mach numbers and density contrasts are needed to produce bends in the radio structure. This explains the apparent conflict between theoretical studies, as conclusions were based on different values of these parameters. Shocks are produced in the ambient medium that might plausibly reproduce the observed alignment of the extended emission line regions with the radio axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call