Abstract
Most countries worldwide have committed to reaching carbon neutrality by the end of the century, with the aim to achieve Net Zero before 2060. To reduce the dependency of energy demands on fossil fuels, use of renewable energy and its gradual transition into the overall energy portfolio becomes increasingly critical. The solar and wind energy accounts for a major part of renewable energy. Considering unstable and noncontinuous production of electricity from these two sources, energy storage becomes essential. Lithium-ion batteries (LIBs) have become the most favorable choice of energy storage due to their good electrochemical performance (high capacity, low charge leakage and good cycle performance) and safety, in particular for portable (3C products, electric vehicles and drones) and stationary applications as well as for emergency electricity supply. However, the specific capacity of graphite, the most common commercial anode material, is reaching its theoretical limit, posing great challenges for improving the overall capacity of LIBs. It is therefore necessary to develop anode materials of higher capacity and better cycle performance. Biomass-derived carbon materials are ideal candidates for further enhancing the performance of LIBs due to their special microstructures, functional diversity and easy structure regulation. Most of these materials can reach capacities exceeding 500 mAh g-1, even the best for more than 1,000 mAh g-1 combined with other anode materials. This review provides an in-depth analysis of diverse carbon sources derived from biomass, categorized based on their distinct structural characteristics, with the focus on evaluating the current roles and bottlenecks of carbon as a component of the electrode materials used in LIBs. The failure mechanisms associated with biomass-derived carbon in LIBs are summarized, with potential solutions to these issues being proposed. The potential challenges and prospects for biomass-based LIBs are identified and thoroughly discussed. Overall, this review aims to serve as a resource for the strategic design and advancement of carbon-based materials, to achieve next-generation LIBs of superior performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.