Abstract

We studied (NaSCN)2(H2O)n - clusters in the gas phase using size-selected anion photoelectron spectroscopy. The photoelectron spectra and vertical detachment energies of (NaSCN)2(H2O)n - (n = 0-5) were obtained in the experiment. The structures of (NaSCN)2(H2O)n -/0 up to n = 7 were investigated with density functional theory calculations. Two series of peaks are observed in the spectra, indicating that two types of structures coexist, the high electron binding energy peaks correspond to the chain style structures, and the low electron binding energy peaks correspond to the Na-N-Na-N rhombic structures or their derivatives. For the (NaSCN)2(H2O)n - clusters at n = 3-5, the Na-N-Na-N rhombic structures are the dominant structures, the rhombic four-membered rings start to open at n = 4, and the solvent separated ion pair (SSIP) type of structures start to appear at n = 6. For the neutral (NaSCN)2(H2O)n clusters, the Na-N-Na-N rhombic isomers become the dominant starting at n = 3, and the SSIP type of structures start to appear at n = 5 and become dominant at n = 6. The structural evolution of (NaSCN)2(H2O)n -/0 (n = 0-7) confirms the possible existence of ionic clusters such as Na(SCN)2 - and Na2(SCN)+ in NaSCN aqueous solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call