Abstract

This review considers the results of probing the structure of ribonucleoprotein particles of helical plant viruses by tritium planigraphy (TP). This method works by exposing macromolecular targets to a beam of tritium atoms and analyzing the tritium label distribution along the macromolecule length. The TP data combined with theoretical predictions made it possible to propose a structural model of the coat protein for the virions of potato viruses X (the type representative of potexviruses) and A (a potyvirus), which eluded X-ray diffraction analysis so far. TP revealed fine structural differences between the wild-type tobacco mosaic virus (strain U1) and its temperature-sensitive mutant with an altered coat protein and host specificity. The possibilities of using TP for studying the RNA–protein interactions in helical virus particles are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.