Abstract

Benzyl ester of monensin A (MON3) and allyl ester of monensin A (MON4) were synthesized and their ability of forming complexes with divalent cations was studied by ESI mass spectrometry and by PM5 semi empirical calculations. The ESI-MS spectra indicate that MON3 as well as MON4 form stable 1:1 complexes with the divalent cations used in this study. The complexes of MON3 are stable to cv = 50 V and after this cv value no m/ z signals are more observed in the spectra. In contrast, with increasing cone voltage values, a fragmentation process of the MON4 complexes is simultaneously observed, where dehydration processes are the main events. The structures of the complexes are discussed in detail on the basis of conformational analysis together with the PM5 semiempirical calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.