Abstract

To understand sulfide inclusions in the steel industry, the structures, stabilities, electronic and magnetic properties of the Mn[Formula: see text]S and Mn[Formula: see text]S2 (n=1–6) clusters are investigated by using first-principles. The results show that the S atoms prefer to occupy the outside surface center of the Mn[Formula: see text] (n = 3–6) clusters. Chiral isomers are occurred to the Mn5S2 isomers. The Mn2S, Mn2S2 clusters are more stable than their neighbors. However, the MnS, S2, and Mn5I2 clusters possess higher dynamic stability than their neighbors by the HOMO–LUMO gaps. The Mn[Formula: see text]S and Mn[Formula: see text]S2 (n = 1–6) clusters prefer to spontaneous generation by Gibbs free energy. A few 4s orbital electrons of Mn atoms transferred to the S atoms by Mülliken population analysis. For the other Mn[Formula: see text]S (n = 1–6) clusters, the spin density (17.256) of the ground-state Mn6S clusters is the largest. For the Mn[Formula: see text]S2 (n = 1–6) clusters, the total spin (9.604) of the ground-state Mn2S2 cluster is the largest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.